Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Total Environ ; 924: 171730, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38492603

RESUMO

Eutrophication and its resulting harmful algal blooms greatly reduce the ecosystem services of natural waters. The use of modified clay materials to assist the phytoremediation of eutrophic water is a promising technique. In this study, ferric chloride and calcium hydroxide were respectively loaded on red soil for algal flocculation and phosphorus inactivation. A two-by-two factorial mesocosm experiment with and without the application of ferric- and calcium- loaded red soil (FA), and with and without planting the submerged macrophyte Vallisneria natans was conducted for the in-situ repair of eutrophic water and sediment. Furthermore, field enclosure application was carried out to verify the feasibility of the technology. At the end of the mesocosm experiment, the total phosphorus, total nitrogen, and ammonia nitrogen concentrations in water were reduced by 81.8 %, 63.3 %, and 62.0 %, respectively, and orthophosphate phosphorus concentration in the sediment-water interface decreased by 90.2 % in the FA + V. natans group compared with those in the control group. The concentration and proportion of chlorophyll-a in cyanobacteria decreased by 89.8 % and 71.2 %, respectively, in the FA + V. natans group. The content of active phosphorus in V. natans decreased and that of inert phosphorus increased in the FA + V. natans group, compared with those in the V. natans alone group, thus may reducing the risk of phosphorus release after decomposing of V. natans. The sediment bacterial diversity index did not change significantly among treatments. Field enclosure application have also been successful, with chlorophyll-a concentration in the water of treated enclosure decreased from above 200 µg/L to below 10 µg/L, and phosphorus concentration in the water decreased from >0.6 mg/L to <0.02 mg/L. These results demonstrated that the FA in combination with submerged macrophyte planting had great potential for the in-situ remediation of eutrophic water, especially those with severe algal blooms.


Assuntos
Ecossistema , Lagos , Cálcio , Solo , Eutrofização , Proliferação Nociva de Algas , Água , Clorofila , Clorofila A , Ferro , Ferro da Dieta , Fósforo , Nitrogênio/análise
2.
J Hazard Mater ; 432: 128647, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35305412

RESUMO

As a new type of environmental pollutant, environmental antibiotic residues have attracted widespread attention, and the degradation and removal of antibiotics has become an engaging topic for scholars. In this paper, Novozym 51003 industrialized laccase and syringaldehyde were combined to degrade sulfonamides in aquaculture wastewater. Design Expert10 software was used for multiple regression analysis, and a response surface regression model was established to obtain the optimal degradation parameters. In the actual application, the degradation system could maintain a stable performance within 9 h, and timely supplement of the mediator could achieve a better continuous degradation effect. Low concentrations of heavy metals and organic matter would not significantly affect the degradation performance of the laccase-mediator system, making the degradation system suitable for a wide range of water quality. Enzymatic reaction kinetics demonstrated a strong affinity of sulfadiazine to the substrate. Ten degradation products were speculated using high-resolution mass spectrum based on the mass/charge ratios and the publication results. Four types of possible degradation pathways of sulfadiazine were deduced. This work provides a practical method for the degradation and removal of sulfonamide antibiotics in actual sewage.


Assuntos
Lacase , Águas Residuárias , Antibacterianos/química , Aquicultura , Benzaldeídos , Cinética , Lacase/metabolismo , Sulfadiazina , Sulfanilamida , Sulfonamidas/química
3.
Huan Jing Ke Xue ; 43(2): 1089-1096, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075883

RESUMO

Environmental antibiotic resistance genes (ARGs) are a type of emerging pollutant that has been widely concerning. However, investigations into the contamination of ARGs in mining areas have been scarce. Here, the types, abundances, and influencing factors of ARGs and mobile genetic elements (MGEs) were investigated in soil/sediment of the Dexing copper mine area in June 2019 by using high-throughput quantitative polymerase chain reaction (HT-qPCR). Furthermore, the influence of heavy metals and MGEs factors on ARGs was studied using the multivariate statistical analysis method. The results showed that there were a variety of ARGs in the Dexing copper mining area, and the maximum detected number of ARGs was 70. At the relative abundance level, the relative abundance of individual sites reached 0.085. In the Dexing copper mine, multidrug, MLSB, ß-lactamases, tetracycline, and aminoglycoside resistance genes were the dominant ARG classes based on their numbers. The efflux pump was the most dominant resistance mechanism, followed by antibiotic deactivation and cellular protection. There was a significant positive correlation between the abundance of ARGs and MGEs (P<0.05), and TnpA04 and Inti1 were the most important MEGs in Dexing copper mine samples, indicating that horizontal gene transfer might be an important mechanism for the spread of environmental ARGs. The results of Pearson correlation analysis and RDA analysis showed that the content of Cu was significantly positively correlated with the detected numbers and abundance of ARGs (P<0.05), suggesting that the high content of Cu in the Dexing copper mining area might be an important driving factor for the formation of ARGs.


Assuntos
Antibacterianos , Cobre , Antibacterianos/farmacologia , Cobre/toxicidade , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Solo
4.
Sci Total Environ ; 742: 140602, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640389

RESUMO

Biochar is a good adsorbent for water pollutants. However, the effects of biochar on aquatic organisms are not well understood. In this study, different amounts of biochar (CK, 0 mg/g; T1, 10 mg/g; T2, 30 mg/g) were added to sediment to study changes in water quality and its impact on three submerged macrophytes (Hydrilla verticillata, Vallisneria natans, and Ceratophyllum demersum) and the sediment microbial community. The results indicated that biochar treatments significantly increased the water pH and conductivity. Compared with the initial values, the total phosphorus (P) contents in the water of the CK, T1, and T2 treatments decreased by 78.5%, 95.0%, and 58.3%, respectively, while the total nitrogen contents increased by 26.26%, -5.81%, and 19.70%, respectively. Compared with those in CK, the relative growth rates of H. verticillata, V. natans, and C. demersum in T1 increased by 28.4%, 163.1%, and 61.3%, respectively, while those in T2 showed no significant difference except that the growth rates of H. verticillata decreased by 17.7%. The P contents of the three submerged macrophytes increased with the increase of biochar addition, except that there was no significant difference between T2 and CK for H. verticillata. Biochar treatments reduced the biomass of total microbial, bacterial, and fungal phospholipid fatty acids in the sediment for H. verticillata and V. natans, and they increased fungal: bacterial ratios in the low-dose biochar treatments for V. natans and C. demersum. This study demonstrates that the addition of biochar to sediment significantly increased the pH and conductivity, and decreased total P contents in the water. Low-dose biochar treatments were more beneficial for water quality improvements and the growth of submerged macrophytes than high-dose biochar.


Assuntos
Hydrocharitaceae , Qualidade da Água , Carvão Vegetal , Nitrogênio , Fósforo
5.
Water Res ; 174: 115603, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092547

RESUMO

Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs.


Assuntos
Antibacterianos , Esgotos , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Lagos
6.
PLoS One ; 14(7): e0219161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339879

RESUMO

Ammonium pulse attributed to runoff of urban surface and agriculture following heavy rain is common in inland aquatic systems and can cause profoundly effects on the growth of macrophytes, especially when combined with low light. In this study, three patterns of NH4-N pulse (differing in magnitude and frequency) were applied to examine their effects on the growth of three submersed macrophytes, namely, Myriophyllum spicatum, Potamogeton maackianus, and Vallisneria natans, in terms of biomass, height, branch/ramet number, root length, leaf number, and total branch length under high and low light. Results showed that NH4-N pulse caused negative effects on the biomass of the submerged macrphytes even on the 13th day after releasing NH4-N pulse. The negative effects on M. spicatum were significantly greater than that on V. natans and P. maackianus. The effects of NH4-N pulse on specific species depended on the ammonium loading patterns. The negative effects of NH4-N pulse on P. maackianus were the strongest at high loading with low frequency, and on V. natans at moderate loading with moderate frequency. For M. spicatum, no significant differences were found among the three NH4-N pulse patterns. Low light availability did not significantly aggregate the negative effects of NH4-N pulse on the growth of the submersed macrophytes. Our study contributes to revealing the roles of NH4-N pulse on the growth of aquatic plants and its species specific effects on the dynamics of submerged macrophytes in lakes.


Assuntos
Compostos de Amônio/administração & dosagem , Hydrocharitaceae/efeitos dos fármacos , Hydrocharitaceae/crescimento & desenvolvimento , Lagos/análise , Potamogetonaceae/efeitos dos fármacos , Potamogetonaceae/crescimento & desenvolvimento , Saxifragales/efeitos dos fármacos , Saxifragales/crescimento & desenvolvimento , Compostos de Amônio/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Biomassa , China , Ecossistema , Eutrofização/efeitos dos fármacos , Nitrogênio/administração & dosagem , Nitrogênio/toxicidade , Chuva/química , Água/análise , Poluentes Químicos da Água/administração & dosagem , Poluentes Químicos da Água/toxicidade
7.
Front Plant Sci ; 9: 1207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158949

RESUMO

Phosphorus (P) is a limiting element in many aquatic ecosystems. Excessive P input often leads to cyanobacterial bloom, thus triggering ecological imbalances and a series of environmental problems. Submerged macrophytes have a strong ability to absorb P and play important roles in maintaining aquatic ecosystem functions. However, the degree to which submerged macrophytes maintain their tissue P contents in various nutrient levels and the corresponding influencing factors are still not very clear. In this study, the stoichiometric characteristics and stoichiometric homeostasis of P in the aboveground and belowground parts of three submerged macrophytes, Vallisneria natans (Lour.) Hara, Hydrilla verticillata (L.f.) Royle, and Ceratophyllum demersum (L.), with great differences in growth forms, were studied under different growth times and nutrient levels via laboratory experiments. The results showed that the water conductivity, turbidity, and chlorophyll content increased significantly with the increasing nutrient levels. The variation of species, organ, growth time, and nutrient level could significantly affect the P contents of submerged macrophytes. Among these factors, the variance contribution rates caused by the differences of nutrient levels in water column were the highest at more than 50%. The P stoichiometric homeostasis index (HP) in the belowground parts of the three submerged macrophytes was higher than that of the aboveground parts. The HP decreased by the growth time; the HP of V. natans was significantly higher than those of H. verticillata and C. demersum. In summary, the P stoichiometric homeostasis in submerged macrophytes could reflect their responses to environmental changes, and the P content of submerged macrophytes was an indicator of the bioavailability of external P. H. verticillata exhibited a high growth rate and a high accumulation of P content, making it the most suitable species in this study for removing large amounts of P from water in a short term.

8.
Chemosphere ; 195: 817-824, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29289909

RESUMO

In this study, an autotrophic denitrification process was successfully coupled with anammox to remove the nitrate by-product via electrochemical technology. When the voltage applied to the combined electrode reactor was 1.5 V, the electrode reaction removed nitrate by using the autotrophic denitrification biomass without affecting the anammox biomass. The nitrogen removal efficiency of the combined electrode reactor reached 99.1% without detectable nitrate at an influent NO2--N/NH4+-N ratio of 1.5. On day 223, using the model calculations based on reaction equations, 19.7% of total nitrogen was removed via the autotrophic denitrification process, while the majority of nitrogen removal (approximately 79.4%) was attributed to the anammox reaction. Small variations of the population numbers and community structure of artificial bacteria according to electron microscopy predicted that the anammox and autotrophic denitrifying biomasses could coexist in the electrode reactor. Then, 16S rRNA analysis determined that the anammox biomass group was always dominant in mixed flora during continuous cultivation.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/química , Bactérias/metabolismo , Anaerobiose , Processos Autotróficos , Bactérias/genética , Bactérias/isolamento & purificação , Reatores Biológicos/microbiologia , Desnitrificação , Eletroquímica , Nitratos/metabolismo , Nitrogênio/análise , Oxirredução
9.
Sci Rep ; 7(1): 8294, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811648

RESUMO

Ecological processes are generally scale-dependent and there is little consensus about the relative importance of deterministic versus stochastic processes in driving patterns of biological diversity. We investigated how the relationship between functional dispersion and environmental gradients changes with spatial scale in subtropical freshwater lakes. The functional alpha and beta dispersions of all the tested traits were significantly under-dispersed across spatial scales and along environmental gradients. Results showed more functional similarity within communities in leaf dry mass content and flowering duration but less functional turnover among communities in all the tested traits at regional scales (Yunnan-Guizhou plateau and the middle and low reaches of the Yangtze River). The strengths and directions of environmental effects on the functional alpha and beta dispersions depended on the selected traits, diversity metrics and spatial scales. Surprisingly, broad-scale factors - elevation and water transparency - decreased the functional turnover for most traits along the gradients, whereas fine-scale factors - water depth - produced the opposite patterns along the gradient, depending on the trait selected. Our study highlights the dominant role of deterministic assembly processes in structuring the local functional composition and governing the spatial functional turnover of macrophyte communities across multiple spatial scales.


Assuntos
Biodiversidade , Clima , Ecossistema , Água Doce/microbiologia , Lagos/microbiologia , Meio Ambiente , Análise Espacial
10.
Chemosphere ; 184: 137-147, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28586654

RESUMO

SPE-UPLC-MS/MS was used to investigate the occurrence of 18 target antibiotics in the surface water of Poyang Lake over different seasons of 2014-2015. The maximum concentrations of sulfadiazine, oxytetracycline, and doxycycline were 56.2, 48.7, and 39.7 ng/L, respectively. Compared with those in the other lakes or surface waters, the surface water of Poyang Lake contained moderate or below-average levels of antibiotics. The significantly lower concentrations (P < 0.01) of roxithromycin in June 2015 likely resulted from the dilution effect of water flow during the flood season. Antibiotic concentrations were higher in site P3-1 than in other sites (P < 0.01), whereas those in other sites (P1-1, P2-1, P5-1, P6-1, P7-1, P13-1, P16-1, P17-1, P18-1) were not significantly different (P > 0.05). Given that tetracyclines and sulfonamides are common veterinary medicines, the high concentrations of oxytetracycline, doxycycline, and sulfadiazine in site P3-1 might be closely related to agricultural production in the surrounding areas. The risk assessment of the main antibiotic contaminants revealed that the majority of the risk quotients of the target antibiotics were below 0.01, thereby indicating the minimal risk of these antibiotics to organisms at three different trophic levels. Sulfadimidine and sulfadiazine were identified as the main antibiotics that contribute to ecological risk in Poyang Lake, and that the daphnid is the main model organism exposed to these risks. This study provides important data for antibiotic pollution control and environmental protection in the study area and enriches environmental monitoring data on a global scale.


Assuntos
Antibacterianos/análise , Monitoramento Ambiental , Lagos/química , Poluentes Químicos da Água/análise , China , Lagos/análise , Medição de Risco , Estações do Ano , Espectrometria de Massas em Tandem , Tetraciclinas/análise , Água
11.
Environ Pollut ; 226: 154-162, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28431314

RESUMO

Metals can react with microcystin (MC), which is released from cyanobacterial blooms through various mechanisms; these reactions may mitigate the environmental and health risks of MCs but may also cause harm to aquatic ecosystems and humans. Several studies were conducted, including laboratory tests, ecological simulations, and a field investigation of Poyang Lake. The laboratory studies showed that Fe3+, Cu2+, and Pb2+ stimulated MC photodegradation under high light intensity at the water-sediment interface, which reduced the MC accumulation in the sediment. In the laboratory studies involving the addition of metal ions to lake sediment containing adsorbed MC, MC biodegradation was inhibited by supplementing with high levels of Fe3+, Cu2+, or Pb2+. Fe3+ and Pb2+ promoted MC accumulation in the hydrophyte Eichhornia crassipes at relatively low concentrations, but this effect decreased with increasing high metal concentrations. An ecological survey in Poyang Lake during the dry season demonstrated that high Fe levels can reduce MC accumulation in the sediment, which could be the result of Fe-mediated photodegradation. The results indicate that metals involved in MC transportation and degradation may play an important role in the environmental fate of MC.


Assuntos
Metais/toxicidade , Microcistinas/análise , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Adsorção , Biodegradação Ambiental , Cianobactérias/metabolismo , Lagos/química , Lagos/microbiologia , Metais/metabolismo , Fotólise , Estações do Ano , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 307: 350-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26826938

RESUMO

The uses of laccase in the degradation and removal of antibiotics have recently been reported because of the high efficiency and environmental friendliness of laccase. However, these removal studies mostly refer to a limited number of antibiotics. In this study, soil adsorption was introduced into the laccase-oxidation system to assist the simultaneous removal of 14 kinds of sulfonamide, tetracycline, and quinolone antibiotics, which differed in structures and chemical properties. The complementary effects of laccase-mediated oxidation and soil adsorption enabled the simultaneous removal. Removal characteristics were determined by a comprehensive consideration of the separate optimum conditions for laccase oxidation and soil adsorption removal experiments. With concentrations of laccase, syringaldehyde (SA), and soil of 0.5mg/mL, 0.5mmol/L, and 50g/L, respectively, and at pH 6 and 25°C, the removal rates of each antibiotic exceeded 70% in 15min and were close to 100% in 180min. Sulfonamide antibiotics (SAs) were removed mainly by laccase oxidation and quinolone antibiotics (QUs) mainly by soil adsorption. Tetracycline antibiotics (TCs) were removed by both treatments in the coupled system, but laccase oxidation dominated. Electrostatic adsorption was speculated to be one of the adsorption mechanisms in soil adsorption with QUs and TCs.


Assuntos
Antibacterianos/química , Lacase/química , Quinolonas/química , Poluentes do Solo/química , Sulfonamidas/química , Tetraciclinas/química , Adsorção , Oxirredução , Solo/química
13.
PLoS One ; 10(7): e0131630, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26167856

RESUMO

Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology.


Assuntos
Ecossistema , Entropia , Lagos , Modelos Teóricos , Plantas/metabolismo , China , Especificidade da Espécie
14.
Environ Sci Pollut Res Int ; 22(14): 10636-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752635

RESUMO

Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields.


Assuntos
Epicloroidrina/análogos & derivados , Compostos Férricos/química , Água Doce , Proliferação Nociva de Algas/efeitos dos fármacos , Nylons/química , Solo/química , Poluição da Água/prevenção & controle , Análise da Demanda Biológica de Oxigênio , Recuperação e Remediação Ambiental , Epicloroidrina/química , Floculação , Água Doce/microbiologia , Microcistinas/análise , Microcystis/efeitos dos fármacos
15.
Ecotoxicology ; 24(1): 19-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25216744

RESUMO

Occurrence and spatial distributions of microcystins (MCs; MC-RR, -YR, -LR, -LA, -LF, -LW) in Poyang Lake were studied during the period from July 6 to July 18, 2012, by using ultra-high-performance liquid chromatography-electrospray ionization tandem triple quadrupole/mass spectrometry (UPLC-MS/MS). MC-RR was the most dominant variant (94.70 and 84.73 % for intracellular (cellular MCs) and extracellular (dissolved MCs) MCs, respectively) in Poyang Lake, followed by MC-LR (4.65 and 13.17 %, respectively), MC-YR (0.8 and 2.63 %, respectively), and MC-LA (0.02 and 0.00 %), while MC-LW and MC-LF were not detected. Total MCs concentrations (intracellular +extracellular MCs) ranged between 0.0036 and 7.97 µg/L, with an average of 0.79 µg/L, and only two sampling stations with the total MCs concentrations exceeded the drinking water guideline level of 1 µg/L for MC-LR proposed by World Health Organization. The overall spatial pattern of intracellular and extracellular MCs in Poyang Lake demonstrates decreasing trends from east to west, and the south part higher than the north part. Intracellular MCs content was negatively correlated with total nitrogen (r = -0.34, p < 0.01) and NO3 (r = -0.35, p < 0.01), while no significant correlation was found between intracellular MCs concentration and total phosphorus, NH4, and NO2 (p > 0.05), suggesting that NO3 might be a regulating factor for MCs production in Poyang Lake. In addition, intracellular MCs concentrations were positively correlated with wind speed, Microcystis and Cyanobacteria biomass (r = 0.34-0.51, p < 0.05), indicating that wind speed plays an important role in the spatial distributions of MCs, and NO3, toxic cyanobacteria (mainly Microcystis), and wind speed seem to be the important forcing factors driving MCs spatial distributions in Poyang Lake.


Assuntos
Monitoramento Ambiental , Lagos/química , Microcistinas/análise , Poluentes da Água/análise , China , Cromatografia Líquida , Água Potável/química , Água Doce/química , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Análise Espacial , Espectrometria de Massas em Tandem , Vento
16.
Ecol Evol ; 4(9): 1516-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24967072

RESUMO

Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step-wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple-trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community-weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits-productivity relationships.

17.
PLoS One ; 8(4): e62794, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626856

RESUMO

Although functional trait variability is increasingly used in community ecology, the scale- and size-dependent aspects of trait variation are usually disregarded. Here we quantified the spatial structure of shoot height, branch length, root/shoot ratio and leaf number in a macrophyte species Potamogeton maackianus, and then disentangled the environmental and ontogenetic effects on these traits. Using a hierarchical nested design, we measured the four traits from 681 individuals across five ecological scales: lake, transect, depth stratus, quadrat and individual. A notable high trait variation (coefficient variation: 48-112%) was observed within species. These traits differed in the spatial structure, depending on environmental factors of different scales. Shoot height and branch length were most responsive to lake, transect and depth stratus scales, while root/shoot ratio and leaf number to quadrat and individual scales. The trait variations caused by environment are nearly three times higher than that caused by ontogeny, with ontogenetic variance ranging from 21% (leaf number) to 33% (branch length) of total variance. Remarkably, these traits showed non-negligible ontogenetic variation (0-60%) in each ecological scale, and significant shifts in allometric trajectories at lake and depth stratus scales. Our results highlight that environmental filtering processes can sort individuals within species with traits values adaptive to environmental changes and ontogenetic variation of functional traits was non-negligible across the five ecological scales.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Fenótipo , Característica Quantitativa Herdável , Traqueófitas/genética , Adaptação Fisiológica , Biomassa , China , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA